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Abstract

We prove general exponential moment inequalities for averages of [0,1]-
valued iid random variables and use them to tighten the PAC Bayesian
Theorem. The logarithmic dependence on the sample count in the enu-
merator of the PAC Bayesian bound is halved.

1 Introduction

The relative entropy or Kullback Leibler divergence of a Bernoulli variable with
bias p to a Bernoulli variable with bias q is given by

KL (p; q) = p ln
p

q
+ (1� p) ln 1� p

1� q :

Suppose that X = (X1; :::; Xn) is a vector of iid random variables, 0 � Xi � 1,
E [Xi] = � and letM (X) = (1=n)

P
Xi be the arithmetic mean. We will derive

the following inequality, valid for n � 8:

E
h
enKL(M(X);�)

i
� 2

p
n (1)

We also show that the square root on the right side gives the optimal order
in n because for Bernoulli (f0; 1g-valued) variables Xi we have the additional
inequality, valid for n � 2,

p
n � E

h
enKL(M(X);�)

i
. (2)

We will also see that for Bernoulli variables the right side is independent of �,
so that the expectation E

�
enKL(M(X);�)

�
is the same for all Bernoulli variables

and depends only on n.

It is likely that the inequalities (1) and (2) are known. The upper bound (1)
can be applied to improve on the PAC-Bayesian Theorem (see e.g. [9],[11],[13])
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in learning theory: Suppose one has a set of data Z with probability measure
D and a set H of hypotheses h : Z ! [0; 1] (this already includes the usual
loss-function). Suppose further that there is a (�prior�) probability measure P
on H (assume Z and H to be �nite to avoid questions of measurability). Then
for any � > 0, with probability greater than 1�� a sample S =(Z1; :::; Zn) 2 Zn
is drawn from Dn such that for all (�posterior�) probability measures Q on H
we have for n � 2

KL (EhsQ [M (h (S))] ; EhsQ [EzsD [h (z)]]) �
KL (Q;P ) + ln 1� + ln (2n)

n� 1 :

(3)
Here h (S) refers to the vector h (S) = (h (Z1) ; :::; h (Zn)), so that M (h (S)) is
the empirical loss of the hypothesis h. The expression KL (Q;P ) refers to the
relative entropy of the probability measures Q and P (see [5]). The importance
to learning theory comes from the fact that Q may depend on S. Note that (3)
implies

EhsQ [EzsD [h (z)]] � sup
�
� : KL (EhsQ [M (h (S))] ; �) �

KL (Q;P ) + ln 2n�
n� 1

�
;

which can drive a learning algorithm to select a posterior Q by minimizing the
sample-dependent right side . Among other applications ([7], [13]) the PAC
Bayesian bound has been applied to prove generalisation error bounds for large
margin classi�ers such as support vector machines ([8], [11]).
The right side of (3) has, with an overall factor of 1= (n� 1), three terms:

There is the relative entropy KL (Q;P ), which can be interpreted as the in-
formation gain in specializing from P to Q, an information normally extracted
from the sample S. The term ln (1=�) expresses the usual dependence on the
con�dence parameter �, but the remaining ln (2n) is di¢ cult to understand:
Why do we need it, can�t it be altogether eliminated or at least reduced?
We do not know the answer to the �rst two questions, but using (1) we can

essentially cut the term in half, replacing ln (2n) by ln (2
p
n) for n � 8 and

reduce the overall factor to 1=n. Our substitute for (3) then reads

KL (EhsQ [M (S)] ; EhsQ [EzsD [h (z)]]) �
KL (Q;P ) + ln 1� + ln (2

p
n)

n
: (4)

Our improvement is not spectacular, but signi�cant when viewed in terms
of the con�dence parameter �. It gives a slightly smaller generalisation error
bound (factor (n� 1) =n) than (3) with a failure probability � decreased by the
factor 1=

p
n. For example, if n = 10000 and (3) gives a �xed bound with a

failure probability of 1=100, our result will give the same bound with failure
probability less than 1=10000.

It is possible to prove bounds similar to the above (see [3] and [1]), where
the ln (n) dependence is replaced by ln (ln (n)) or eliminated alltogether, at
the expense of multiplying KL (Q;P ) with a constant larger than unity. The
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relative entropy KL (Q;P ) however is dependent on the posterior Q and thus
implicitely on the sample and the sample-size n. In all cases where KL (Q;P )
grows faster than logarithmically in n (the generic case in machine learning)
these bounds will therefore be weaker than (4) above.
We will prove the principal bounds (1) and (2) in section 2. We will then

apply them to the PAC Bayesian Theorem in section 3.

2 Main Inequalities

Throughout this note X1; :::; Xn are assumed to be IID random variables with
values in [0; 1] and expectation E [Xi] = �. We use X to denote the correspond-
ing random vector X = (X1; :::; Xn) with values in [0; 1]

n and M (X) to denote
its arithmetic mean

M (X) =
1

n

nX
i=1

Xi:

For any [0; 1]-valued random variables X use X 0 to denote the unique Bernoulli
(f0; 1g-valued) random variable with Pr fX 0 = 1g = E [X 0] = E [X]. Evidently
X 00 = X 0, 8X. For X = (X1; :::; Xn) we denote X0 = (X 0

1; :::; X
0
n).

We restate our principal bounds in a slightly more general way.

Theorem 1 For all n � 2

E
h
enKL(M(X);�)

i
� E

h
enKL(M(X

0);�)
i
� e

1
12n

r
�n

2
+ 2: (5)

If the Xi are nontrivial Bernoulli variables (i.e. if � 2 (0; 1)) then there is a
sequence cn such that 1 � cn ! � as n!1 and

e�
1
6

r
n

2�
cn + 2 � E

h
enKL(M(X);�)

i
: (6)

In this case the expectation on the right is independent of �.

The right side of (5) is bounded above by 2
p
n for n � 8 and the left side of

(6) is bounded below by
p
n for n � 2, thus giving the simpler bounds (1) and

(2) of the introduction.

To prove Theorem 1 we need some auxilliary results. The �rst is Stirling�s
Formula:

Theorem 2 For n 2 N

n! =
p
2�n

�n
e

�n
e
g(n)
12n (7)

with 0 < g (n) < 1.
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For a proof see e.g. [2]. We will use this Theorem in form of the following
inequalities p

2�n
�n
e

�n
< n! <

p
2�n

�n
e

�n
e

1
12n : (8)

The following simple lemma shows that the expectation of a convex function
of iid variables can always be bounded by the expectation of the corresponding
Bernoulli variables.

Lemma 3 Suppose that f : [0; 1]n ! R is convex. Then

E [f (X)] � E [f (X0)] :

If f is permutation symmetric in its arguments and � (k) denotes the vector
� (k) = (1; :::; 1; 0; :::; 0) in f0; 1gn, whose �rst k coordinates are 1 and whose
remaining n� k coordinates are zero, we also have

E [f (X0)] =
nX
k=0

�
n

k

�
(1� �)n�k �kf (� (k)) :

Proof. A straightforward argument by induction shows that we can write any
point x = (x1; :::; xn) 2 [0; 1]n as a convex combination of the extremepoints
� = (�1; :::; �n) 2 f0; 1g

n of [0; 1]n in the following way:

x =
X

�2f0;1gn

0@ Y
i:�i=0

(1� xi)
Y
i:�i=1

xi

1A�:
Convexity of f therefore implies

f (x) �
X

�2f0;1gn

0@ Y
i:�i=0

(1� xi)
Y
i:�i=1

xi

1A f (�) ;

with equality if x 2 f0; 1gn. Taking the expectation and using independence
and E [Xi] = � we get

E [f (X)] �
X

�2f0;1gn

0@ Y
i:�i=0

(1� �)
Y
i:�i=1

�

1A f (�) :

This becomes an equality if X is Bernoulli, for then X takes values only in
f0; 1gn. In particular E [f (X)] � E [f (X0)], which gives the �rst assertion. If f
is permutation symmetric then f (�) = f (� (jfi : �i = 1gj)) and we can rewrite
the sum above asX

�2f0;1gn
(1� �)jfi:�i=0gj �jfi:�i=1gjf (� (jfi : �i = 1gj))

=
nX
k=0

�
n

k

�
(1� �)n�k �kf (� (k)) :
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The next lemma is concerned with a series which can be viewed as a Rieman
sum approximating an instance of the Beta-function.

Lemma 4 For n � 2 the sequence

cn =

n�1X
k=1

1p
k (n� k)

satis�es 1 � cn � �, and cn ! � as n!1.

Proof. De�ne a function  on (0; 1) by

 (t) =
1p

t (1� t)
:

The change of variables t! cos2 � shows thatZ 1

0

 (t) dt = �:

It follows from elementary calculus that  has a unique minimum at t = 1=2
with minimal value 2. This implies that 1=

p
k (n� k) � 2=n and therefore

cn � 2 (n� 1) =n � 1 for n � 2. It also implies that the functions  n de�ned
on (0; 1) by

 n (t) =

8>><>>:
1q

k
n (1�

k
n )

if t 2
�
k�1
n ; kn

�
and k � n=2

0 if t 2
�
k�1
n ; kn

�
and k � 1 � n=2 < k

1q
k�1
n (1�

k�1
n )

if t 2
�
k�1
n ; kn

�
and n=2 < k � 1

satisfy  n �  . Since

cn =
n�1X
k=1

1p
k (n� k)

=
n�1X
k=1

1

n
q

k
n

�
1� k

n

� = Z 1

0

 n (t) dt

this implies that cn � �. Also  n !  a.e. so that by dominated convergence

cn =

Z 1

0

 n (t) dt!
Z 1

0

 (t) dt = �:

Proof of Theorem 1. If Xi is trivial (i.e. if � 2 f0; 1g) (5) is evident, so we
can assume � 2 (0; 1). De�ne

f : x 2 [0; 1]n 7! exp

 
nKL

 
1

n

nX
i=1

xi; �

!!
:
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Since the average is linear and KL is convex (see [5]) and the exponential
function is nondecreasing and convex, the function f is also convex. f is clearly
permutation symmetric in its arguments. Lemma 3 immediately gives

E
h
enKL(M(X);�)

i
� E

h
enKL(M(X

0);�)
i
=

nX
k=0

�
n

k

�
(1� �)n�k �kf (� (k)) :

(9)
establishing also the �rst inequality in (5). Using the special form of the function
f we �nd

f (� (k)) = exp

�
nKL

�
k

n
; �

��
=

�
n� k

n (1� �)

�n�k �
k

n�

�k
:

Substitution in (9) leads to cancellation of the dependence in � (proving the
last statement of the theorem) and gives

E
h
enKL(M(X

0);�)
i
=

nX
k=0

�
n

k

��
k

n

�k �
n� k
n

�n�k

=
n!

nn

n�1X
k=1

kk

k!

(n� k)n�k

(n� k)! + 2:

Using Stirling�s formula (8) and Lemma 4 on the last expression we obtain

E
h
enKL(M(X

0);�)
i

�
p
2�n

�
1

e

�n
e

1
12n

n�1X
k=1

1
p
2�k

�
1
e

�k 1p
2� (n� k)

�
1
e

�n�k + 2
= e

1
12n

r
n

2�

n�1X
k=1

1p
k (n� k)

+ 2

� e
1

12n

r
�n

2
+ 2;

which gives (5). Similarly

E
h
enKL(M(X

0);�)
i
� e�

1
6

r
n

2�

nX
k=0

1p
k (n� k)

+ 2

= e�
1
6

r
n

2�
cn + 2;

which gives (6) for Bernoulli variables.

3 Application to the PAC-Bayesian Theorem

Consider an unknown probability distribution D on a set Z, and a set H of
hypotheses h : Z ! [0; 1] (includes the loss function). To avoid a discussion
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of measurability Z and H are both assumed to be �nite: Their cardinality
is otherwise irrelevant and will not appear in our results. The sample S =
(Z1; :::; Zn) is a Zn-valued random vector drawn from Pr = Dn. For h 2 H we
use h (S) to denote the [0; 1]-valued random vector h (S) = (h (Z1) ; :::; h (Zn)).
We write

h (D) = EzsD [h (z)] and M (h (S)) =
1

m

mX
i=1

h (Zi) :

If Q is a probability measure on H, we write

Q (D) = EhsQ [h (D)] and Q (S) = EhsQ [M (h (S))] :

The relative entropy of two probability measures Q and P on a set H, denoted
KL (Q;P ) ; is de�ned to be in�nite if Q is not absolutely continuous w.r.t. P .
Otherwise, if dQdP is the density of Q w.r.t. P , we set

KL (Q;P ) = EQ

�
ln
dQ

dP

�
:

Theorem 5 We have for any probability distribution P on H, for n � 8 and
8� > 0

Pr
S

�
9Q : KL (Q(S); Q(D)) >

KL (Q;P ) + ln 1� + ln (2
p
n)

n

�
� �: (10)

Proof. For every hypothesis h 2 H, applying the bound (1) to the random
vector h (S) gives

ES

h
enKL(M(h(S));h(D))

i
� 2

p
n:

Let S 7! QS be any map from samples to the probability distributions on H (a
learning algorithm for Gibbs classi�ers). Using Jensen�s inequality, convexity of
the KL-divergence and of the exponential function, we have

ES [exp (nKL (QS(S); QS(D))�KL (QS; P ))]

� ES

�
exp

�
EhsQS

�
nKL (M (h(S)) ; h(D))� ln dQS

dP
(h)

���
� ES

�
EhsQS

�
exp

�
nKL (M (h(S)) ; h(D))� ln dQS

dP
(h)

���
= ES

"
EhsP

"
enKL(M(h(S));h(D))

�
dQS
dP

��1�
dQS
dP

�##
� EhsP

h
ES

h
enKL(M(h(S));h(D))

ii
� 2

p
n:
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Finally, by Markov�s inequality,

� � Pr
S

�
enKL(QS(S);QS(D))�KL(QS;P ) >

2
p
n

�

�
= Pr

S

�
KL (QS(S); QS(D)) >

KL (QS; P ) + ln
1
� + ln (2

p
n)

n

�
:

An appropriate worst-case choice of the function S 7! QS gives (10).

The loosest step in the proof is the use of Markov�s inequality. The lower
bound (2) can be used to show that the other inequalities are rather tight:
Let Z be any large �nite set, H a set of functions h : Z ! f0; 1g and D a
distribution such that the members ofH all induce nontrivial Bernoulli variables
i.e. EzsD [h] 2 (0; 1) ;8h 2 H. Let P be uniform on H. For a sample S we
de�ne the posterior QS by its density w.r.t. P:

dQS
dP

(h) =
emK(M(h(S));h(D))

EhsP
�
emK(M(h(S));h(D))

� :
Then

 (h;S) = mK (M (h (S)) ; h (D))� ln dQS
dP

= lnEhsP

h
emK(M(h(S));h(D))

i
is independent of h. Therefore with (2)

ES

�
e
EhsQ

h
mK(M(h(S));h(D))�ln dQS

dP

i�
= ES

h
eEhsQ[ (h;S)]

i
= ES

h
EhsQ

h
e (h;S)

ii
= EhsP

h
ES

h
emK(M(h(S));h(D))

ii
�

p
n:

This can be rewritten as the statement: For every � > 0

ES

�
exp

�
mEhsQ [K (M (h (S)) ; h (D))]�KL (Q;P ) + ln 1

�
+ ln

p
m

��
� �;

a very weak lower bound version of the PAC-Bayesian theorem, which never-
theless shows that an elimination or the

p
m term, if it is at all possible, would

have to follow a completely di¤erent path.

References

[1] Jean-Yves Audibert, Olivier Bousquet, �PAC-Bayesian generic chaining�,
http://www.kyb.mpg.de/publications/pdfs/pdf2341.pdf.

8



[2] Heinz Bauer, Wahrscheinlichkeitstheorie, De Gruyter New York, 2002

[3] Olivier Catoni, �A PAC-Bayesian Approach to adaptive classi�cation�,
http://www.proba.jussieu.fr/mathdoc/textes/PMA-840.pdf.

[4] Herman Cherno¤, �A measure of asymptotic e¢ ciency for tests of a hypoth-
esis based on the sum of observations�, Annals of Mathematical Statistics,
23:493-507, 1952.

[5] Thomas Cover, Joy Thomas, Elements of Information Theory, Wiley, 1991

[6] Wassily Hoe¤ding, �Probability inequalities for sums of bounded random
variables�, Journal of the American Statistical Association, 58:13-30, 1963.

[7] John Langford and Matthias Seger, �Bounds for averaging classi�ers�,
CMU Technical report, CMU-CS-01-102, 2002

[8] John Langford and John Shawe-Taylor, �PAC Bayes and Margins�, Neural
Information Processing Systems (NIPS), 2002

[9] David McAllester, �Some PAC-Bayesian Theorems�, Proceedings of the
Eleventh Annual Conference In Computational Learning Theory, 230-234,
1998.

[10] David McAllester, �PAC-Bayesian Stochastic Model Selection�, Machine
Learning, 5:5-21, 2003

[11] David McAllester, �Simpli�ed PAC-Bayesian Margin Bounds�, COLT 03,
2003

[12] Colin McDiarmid, �Concentration�, in Probabilistic Methods of Algorithmic
Discrete Mathematics, p. 195-248. Springer, Berlin, 1998.

[13] Matthias Seger, �PAC Bayesian generalisation bounds for Gaussian
processes�, Journal of Machine Learning Research, 3:233-269, 2002

9


